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1. BACKGROUND

Dr. Puckett conceived of a novel kinetic energy penetrator geometry that simple theory suggests would
promise increased penetration at higher striking velocities. Conceptually, a long rod penetrator is
lengthened and the excess mass so added is then removed by drilling out a pattern of holes parallel to the
axis near the periphery through the entire length of the rod, decreasing its apparent density. If the density
law holds, the increase in penetration due to increased length should more than offset the loss of
penetration due to the decrease in apparent rod density.

The density law is derived from simple physical principles and the assumption that the striking
velocity is high enough that inertial forces greatly exceed penetrator and material strength values. Follow
the derivation below to see the interplay of the effects of length and density that suggest that a longer,

lower density rod of the same diameter and mass should outperform a higher density one.

Define p as material density, P as an increment of target penetration, and L as the increment of
penetrator length eroded to cause that target penetration. Use p and ¢ as subscripts for penetrator and
target, respectively, and use 1 and 2 as subscripts to identify two specific, different penetrator materials.
Consider the mass balance on two streams of strengthless fluids of equal area impacting each other
coaxially. In a frame of reference fixed relative to the interface between the two streams, assume that the
two streams of fluid exit the impact zone radially. Solve the momentum equation for the relative
velocities, and translate back to a frame of reference fixed relative to the "target” stream. This yields the
well-known density law, which relates the relative erosion rates of penetrator and target to the material

densities,
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For two right circular cylindrical streams of equal diameters, the lengths having equal masses are in
inverse proportion to their densities,
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Substituting Equation 4 into 3 describes how a target material is penetrated by incremental lengths of
penetrator streams of equal areas but different densities, on a penetrator stream mass-for-mass basis:
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This theory is adapted to the real world of finite rod length by assuming that results for endless
streams of penetrator and target material also hold for a finite-length, rod-shaped penetrator attacking very
thick armor material. The density law and the two assumptions made to this point suggest that a rod of
steel of density 7.83 g/cm> should penetrate the same target material 1.49 tifnes as deeply as a rod of
tungsten alloy, density 17.3 g/cm3, for the same striking velocity, mass and diameter. How close to this

simple theory is reality?
2. EXISTING DATA

In the 1988-1991 time frame, the von Karmman Facility’s G-Range (VKFG) of the U.S. Air Force’s
Amold Engineering Development Center, Amold Air Force Base, TN, conducted a firing program in their
two-stage light gas gun for the U.S. Ammy Ballistic Research Laboratory (BRL) Penetration Mechanics
Branch (PMB), Terminal Ballistics Division (TBD), under the author’s oversight (de Rosset, Sorensen,
and Silsby 1991). An extensive penetration bascline was fired of tungsten sinter alloy rods, density
17.3 g/cm3 (91W-6.3Ni-2.7Fe Teledyne Firth Sterling X27). Length-to-diameter ratios (L/D) ranged from
15 to 30, and masses were 125 and 250 g nominal. Targets were stacks of eight pieces of 3-in (76 mm)
rolled homogeneous armor (RHA), retempered to the same hardness range as 6-in (150 mm) plate, and
struck at normal incidence. By maintaining this hardness, the semi-infinite penetration performance

baseline is consistent with a large class of data from the literature.

At the request of Konrad Frank of BRL, a shot was fired to look at the effect of density at high
velocity. The 8.33-mm nominal minor diameter L/D 15 125-g rod, 125 mm long, was chosen as the
baseline. To preserve mass and diameter, an 8.33-mm minor diameter x 276.07-mm-long 4340 steel rod
was made. It was heat-treated to achieve an average Rockwell hardness of 45 (HRC 45), close to that of
the tungsten rod. Striking velocity for this shot (VKFG 6461, fired 13 February 1989) was 2.97 km/s.
Target hardness, averaged over the length of the penetration channel, had a hardness number on the
Brinnel scale (HBN) of 268.5. A sufficiently low-yaw impact was obtained to guarantee reliable data
(Bjerke et al. 1992). The depth of penetration was 247 mm.

Penetration per unit length of an unknown penetrator-target material combination can be approximated
by multiplying the value of the penetration-vs.-velocity function for a known penetrator-target combination
at the velocity of interest by the density law factor (Equation 5). One empirical relationship that fits the
P/L-vs.-velocity data well, which I call a modified exponential form, is:




(B+CV) (6)

PIL = ’
o™

where V is velocity in kilometers per second and B, C, D, and E are the fitting parameters. When applied
to a set of 100 P/L-vs.-velocity data exiracted from the literature and generated in-house (see Appendix A)
for all tungstens of density 17.0-17.6 g/cm’ into all semi-infinite steels of hardness approximately
269 HBN, one obtains:

py = {1236 + 0.0875 V) o
(1 + 117635 V)

This four-parameter fit is, of course, grossly overparameterized. This form was adopted to replace
an earlier six-parameter hyperbolic fit that had the disadvantage of being negative at low velocities,
making it perform poorly in regressions. The —3.5 and 117 values are arbitrarily fixed in Equation 7 to
approximate the values that would be obtained at the absolute minimum standard deviation as determined
by a free fit. Then A and B are treated as two free parameters.

The empirical modified exponential form matches reality much better than the physically-based
Tate-Alexseevskii (T-A) fits, which use experimentally derived values for target and penetrator resistances
to modify Bernoulli’s equation for the impact of two coaxial streams of fluid of equal areas. The modified
exponential fit is flexible enough that it closely follows many reasonably well-behaved sets of penetration
data, and by constraining the parameter C to be positive, matches the observed, seemingly linear rise of
P/L well beyond the hydrodynamic limit, which is crossed for tungsten-vs.-armor steel (P/L = 1.49) at
about 3 km/s.

Based on this fit, penetration for the 125-mm-long tungsten baseline rod would be expected to be
186.7 mm at 2.97 km/s. Multiplying by the 1.49 factor for increased penetration due to increased length
due to decreased density, the expected penetration depth for the steel-on-steel shot would be 277 mm (see
Figure 1). Under this set of assumptions, the actual 247-mm penetration of the longer steel rod is 89%
of the figure obtained by transforming actual tungsten-on-RHA data to form a predictor of steel-on-RHA
performance by multiplying it by the density law factor. From another perspective, the steel rod did




VELOCITY (km/s)

* WA vs RHA DATA
[P/Llwa = (1.236 + 0.0875*V)/(1+117*EXP(-3.5%*V)),
SD = 0.04, 100 POINTS

[P/L]lst = ([P/Llwa)/1.49
® STEEL vs RHA DATA POINT

Figure 1. Tungsten long rod vs. steel hypervelocity database and modified exponential fit (see
Appendix A, Table A-1). Lower line approximates expected performance of steel on steel
resulting from dividing tungsten-on-steel curve values by 1.49. Point is actual performance of
steel long rod.

32.3% better than its tungsten counterpart as opposed to 49%. There is some discrepancy between actual
performance with this simplistic model in the lower end of the hypervelocity regime, and hence a

discrepancy is almost certain in the lower-velocity regime as well.

The P/L for like-on-like strengthless materials should be unity. In this one case, the measured P/L
was 0.89, showing some margin for improvement. But the increase in penetration of 32.3% on a
mass-for-mass and diameter-for-diameter basis obtained through a decrease in rod density is quite an

achievement, if the resultant longer rod can be successfully launched.




3. APPROACH

To explore the performance advantages of a holed-out rod, a number of experimental options were
examined. The concept was thought to be particularly applicable to typical antitank long rod penetrators,

necessitating a very long rod with small holes placed in a reasonably accurate pattern.

The concept was to be investigated in a modest in-house firing program. Ideally, small prototype rods,
weighing under 100 g, would provide the potential for economically launching either tungsten or uranium
alloys at velocities exceeding 2 km/s in PMB’s quarter-scale ranges. This approach was first investigated
by Lee Magness, a metallurgist in PMB with extensive experience in techniques for fabricating quite
exotic small long rod penetrators. The best practical technique for making the small holes would be to
cast, extrude, or swage a matrix of penetrator material surrounding a pattemn of wires of a different
material. The wires would then be preferentially etched away. However, this was deemed too costly and

complex to consider further.

Gun drilling is a specialized process for machining a long, accurate hole that could be applied to
manufacturing full-up rounds reasonably economically. To fabricate prototypes at a commercial facility,
we would almost certainly be limited to a tungsten ballistic alloy as opposed to uranium. There is a lower
limit on hole size that can be obtained that depends on the toughness and chip-forming qualities of the
material to be drilled. Conversations with potential suppliers suggested that it would be possible to
fabricate tungsten prototypes with a minimum hole diameter of about 4 mm, limiting testing to nearly
full-diameter rods. Several suppliers could accurately place 500-mm-deep holes, but the lead time would
be long. It was not thought necessary to fire full-length rods to evaluate performance.

PMB’s Range 309A (R309A) was pursuing a program for Enderlein of BRL’s Vulnerability/Lethality
Division during his rotational assignment to BRL’s Armor Mechanics Branch (AMB). He was firing
20-mm-diameter x 100-mm-long 555-g tungsten alloy short rods at ordnance velocities against a variety
of candidate heavy armor backpack targets (Enderlein 1991). Specifically, the AMB rods were
92.87W-3.44Ni-1.51Fe-2.18Co (Teledyne Firth-Sterling X21C, produced by the large bar process, swaged
15% reduction in area, and strain-aged at 500° C for 1 hr). They had a density of 17.71 g/cm3, a strength
of 1.4 GPa, an elongation to rupture of 9%, and a hardness of HRC 47. Impact strength was 53 ft-1b
(Poston 1990). All such rods serialized for firing in R309A were identified with a prefix of "2-."




This rod was well suited for a holed-out rod study. In the course of R309A sabot development work
for Enderlein’s program, two shots of the rod vs. RHA at normal incidence had been fired. Additional
" baseline shots needed for the holed-out rod program would benefit both parties. AMB kindly agreed to
contribute the solid rods and other launch package components.

The number of holes, their diameter, and their placement fell out from other constraints. The larger
the hole diameter, the easier the part would be to fabricate, with about 3 mm being the smallest hole
diameter possible with commercially available tooling. The BRL shops were capable of drilling such
holes in the tungsten ballistic alloy over 50 mm deep, so the pattern could be put into the 100-mm rod
by drilling from both ends.

Concurrently with the experimental work, an extensive 3D computational effort using CTH on BRL’s
Crays was undertaken by Kimsey (1995). A pattern of eight holes was settled upon to provide an
orthogonal pair of planes of symmetry through the rod’s axis to decrease run-time by modeling only one-
fourth of the rod.

A 1/8-in (slightly over 3 mm) hole diameter was selected to provide a large decrease in mass (to
achieve 80% of the mass of the solid rod). An adequate web between adjacent holes and between hole
and rod periphery was provided by situating the hole centerlines equally spaced on a circle 13 mm in
diameter, the hole circle’s center on the rod centerline. Several solid rod geometries were fired to provide
benchmarks against which the performance of the lower apparent-density rods could be compared. Solid
rods of the same length and mass as the drilled-out rod, 100 mm long x 17.82 mm diameter, would test
the effect of length at full density. L/D 4 rods of the same diameter and mass as the holed-out rod would
test the effect of mass at full density when their performance was compared with that of the LD 5,
20-mm-diameter rods. See Figure 2 for rod dimensions.

4. EXPERIMENTAL RESULTS

The BRL Shops fabricated the various penetrators needed. These were fired from the 50-mm,
smoothbore, high-pressure powder gun in PMB’s Range 309A. A push-launch sabot was used, typical
of the genre except with respect to a recently developed venting scheme whose details are unimportant

here (Figure 3). A near-maximum propelling charge was used, so that striking velocity was about
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Figure 2. Rod geometries.

Figure 3. Push-launch package design for 50-mm, smoothbore, high-pressure powder gun, Range 309A.




1,600 m/s (Silsby 1995). The target was RHA at normal incidence. Targets would be sawed open to
ensure accurate determination of the location of the channel bottom. It was hoped that velocity would be
* high enough that strength effects would not predominate, and the holed-out rod would penetrate just about
as deeply as the L/D § solid rod.

Two aspects of the behavior of the holed-out rod were notable compared to the performance of the
solid rods. The holed-out rod produced a clearly fluted hole in the target. And, the holed-out rod left no
distinguishable piece of residual rod tail, unlike its solid counterparts.

The primary datum for making performance comparisons is the depth of penetration. The data from
the H-rod program are tabulated in Appendix B, as well as additional R309A data for X21C rods vs. RHA
used for further analysis (Table B-1). The bulk of these additional shots was undertaken by R309A under
the author’s supervision in the course of improving range capabilities. Several shots were conducted for

AMB customers, who graciously consented to the use of their data here.

To be competitive on an equal-mass, equal-diameter basis, the holed-out rod had to penetrate at least
as well as the L/D 4 444-g solid rod. It was hoped that it would penetrate nearly as deeply as the L/D 5
555-g solid rod (i.e., penetration was being driven by rod length, not momentum). In penetrations
averaging about 100 mm, the data scatter (standard deviation around a straight-line fit) from the 100-mm-
long, 444-g holed-out rod exceeded 13 mm, while that of the fits to the L/D 4 and 5 solid rod data barely
exceeded the measurement precision at 2.5 mm each. Because of the holed-out rod data scatter,

quantitative comparisons are problematic. The penetrations are plotted in Figure 4.

Qualitatively, the holed-out rod penetrated considerably poorer than the equal-length, 20-mm-diameter
555-g parent rod, and, on the average, a bit poorer than the 100-mm-long x 17.78-mm-diameter, 444-g
equal-mass, equal-length solid version. In two shots, the holed-out rod did no better than the 80-mm-
long x 20-mm-diameter, 444-g solid rod, considering the variability in the data sets. On the average, the
penetration depth of the holed-out rod shots was somewhat above that of its equal-mass, 80-mm long x

20-mm companion.

A commonly accepted principle is that penetration per unit length increases smoothly with decreasing
L/D—more so at lower L/Ds, such as here, than for long rods (L/D > 10). When the penetrations were

so normalized and plotted as a function of velocity, inconsistencies in the data became obvious. The 95%




X21C Short Rods versus RHA HBN 269 at Normal Incidence

P

E ———

N 150

E O

T

R o o O

A

T (o]

1 1001

0

N

(

T 50 } } } i ; ' t
m 1000 1100 1200 1300 1400 1500 1600 1700
)

VELOCITY (m/s)

A 100x20.00 mm 555 g SOLID ROD
a 80x20.00 mm 444 g SOLID ROD
¢ 100x17.79 mm 444 g SOLID ROD
O 100x20.00 mm 444 g HOLED-OUT ROD
L =100, P = 0.1302*V - 69.3, SD
L 80, P = 0.1302*V -100.9, SD

.5, POINTS
.5

2 5
2.5, 3 POINTS, SLOPE FIXED

Figure 4. Penetration vs. velocity for various rod geometries.

confidence region around the data for the L/D 5 100-mm-long x 20-mm-diameter rod data included the
L/D 4 data (80 mm x 20 mm diameter), even though both scatters were low. The L/D 4 data lay between
the L/D 5 and L/D 5.6 (100 mm x 17.78 mm diameter) data (see Figure 5).

The excessive scatter in the holed-out rod data and lack of consistent rank-ordering of the penetrations
by rod L/D suggested problems in the experimental technique. Further analysis of the data was indicated
to surface and deal with the sources of variability in the data to establish a firm basis upon which to
interpret results.

5. ANALYSIS

A number of causes of data variability suggested themselves. Additional X21C vs. RHA data were
sought from the R309A database. Much of it was generated from time to time in the form of test shots
following upgrade work on the gun or range (Appendix B, Table B-1, including measures generated in
the analysis), with the exception of data from two baseline shots for Perciballi (1992) and one for Keele




X21C Short Rods vs RHA HBN 269 at Normal Incidence
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Figure 5. Penetration normalized by rod length vs. velocity for the same data set.

(1_992), both of AMB.” The database was small and not homogeneous, so that the magnitude of some

effects could not be determined or separated from others directly.

5.1. Yaw, Target Hardness Eliminated as a Source of Variability. The effect of yaw is well
understood (Bjerke et al. 1992) and could be eliminated by excluding from analysis shots exceeding a
computed threshold. Likewise, the effect of target hardness, well modeled by a multiple linear form
around the velocities and hardnesses used in this program (Enderlein 1991), was eliminated by excluding

from analysis shots from the database in which target hardness was not close to the nominal HBN 269
for 6-in (150 mm) RHA.

5.2 Other Influences Sought. The influence of other factors is less well understood. The data was

inspected to surface any other obvious correlations. Assume that the measured P/L is the result of a series
of factors, each proportional to some uncontrolled influence, multiplied by the P/L that would obtain if
all factors were constant, the ideal behavior. (This assumes only a small interaction between factors.)

* Permission to use this data is gratefully acknowledged.
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P/Lmeas=fl sz xf..?x“'fIIXP/Lideal (8)

By averaging a lot of nearly homogeneous data in which the unknown influences are either small and
well distributed or few and far between, the ideal behavior can be approximated. Thus, the fit to the large
tungsten and steel long rod database, Equation 7, multiplied by some small factor to account for the rods
in the database being softer and of lower density than the X21C data to be analyzed, is likely to be closer
to the sought-after ideal X21C behavior in most cases than any function fit to the very small subsets of
performance data for the X21C rods themselves. By dividing Equation 8 by Equation 7, the factors
causing variability of the data are better exposed to view.

PlL s PIL e
——— X X X o X

P/Lmeas .

T/L—ﬁt— -(fl Xf2Xf3X"'fn)XK ©)

Comparing the average of these numbers between classes of possible influence, some conclusions can
be drawn about the importance of each suspected component of variability. This can clearly be seen in
the case of L/D. Numbers that stand out from their class suggest correlations with particular factors when

consistently associated with variations in measures of possible causes of influence.

The pusher plate can create a significant dent in a target, possibly increasing the depth of penetration
on certain shots. A technique for deflecting the pusher plate off the shot line was developed in R309A,
eliminating this suspected source of data variability. For analyzing data acquired previously, a pusher
plate damage measure was defined as the product of the mass of the pusher plate, an orientation factor
that increased as the striking attitude went from flat to edge-on, and the estimated percentage of pusher
plate that actually entered the penetration channel. No effect could be noticed.

This screening approach works only when one factor is predominant. It also cannot discriminate when

there is little variation in suspected factors, in small data sets, or where one factor balances out another.

Other suspected causes of variation in penetration would be whether or not the target was heavily backed
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up in the axial direction, whether or not the target was comprised of multiple plates (laminated), and
whether or not the penetration channel crosses one or more plate boundaries. There was insufficient data
to settle any of these questions, and, in fact, much of the data in the literature may suffer from these

influences.

5.3 Inadequate Lateral Confinement, L/D Effects Suspected. Work in progress by Lori Pridgeon
(1995) of ARL quantified the effect of lateral target extent for L/D 20 65-g tungsten alloy rods attacking
square RHA targets well centered. Her work shows an approximately 20% increase in depth of

penetration at nominally 1,500 m/s as the targets went from 6 in (150 mm) square to 2 in (50 mm) square.
This effect was independently confirmed in the work of Littlefield et al. (1995) with L/D 10 65-g rods
attacking HRC 269 4340 steel cylinders at 1,600 m/s. They obtained a 37% increase in depth of
penetration as the ratio of target-to-penetrator diameter dropped from 20 to S. In the holed-out rod and
the supporting R309A data, 17-20-mm-diameter rods were shot into 200- or even 150-mm-wide plates,
so that the effective target-to-penetrator diameter varied, and could be as low as 7.5. On some of our
tests, the shot-strike was significantly eccentric, thinning further the web of material around the periphery
of the target at one spot. This reduced (and variable) lateral confinement became a major post-test

concem.

Usually, the shot struck centered in a square target. As Pridgeon’s data suggested, the width of the
target was too small to be representative of a semi-infinite penetration. Analyzing Pridgeon’s data
suggested that a simple hyperbola of the form P/Po = F/A + G, described the increased penetration with
decreased lateral extent. P/Po is the ratio of penetration into a target of decreased lateral extent divided
by penetration expected for a very wide target, F and G are arbitrary constants, and A is the target
presented area. A plot in Littlefield et al. (1995) for targets of a cylindrical geometry struck coaxially
appears to behave similarly.

In the case of an eccentric shot line, plastic work in the target is not distributed symmetrically. See
Figure 6. Localized zones of gross plastic flow at the thinnest webs could possibly reduce target
penetration resistance further, but not enough data in this and related work could be surfaced to form a
judgment as to just how to model the effect. Instead, the response was assumed to be hyperbolic as well,

and the residuals examined to see if this assumption were justified.
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Figure 6. Target (least) lateral web defined.

For low L/D shots, the relief wave off the target face would be expected to contribute more to reduced
penetration resistance than the effect of lateral confinement. Indeed, the unit penetration on the lowest
L/D shots is generally higher than the global average of the R309A data set, showing this L/D effect. The
effect of L/D, however, disappears into the noise in this data set at very low L/Ds.

The effect of lateral confinement on the longer rod shots begins to be distinguishable from the noise
when the ratio of minimum lateral web to projectile diameter drops below about two. The one holed-out
rod shot with the suspected anomalously highest penetration also had the lowest ratio of lateral web to rod
diameter, though still in the range of values of the comparable data.

5.4 Other Data Needed. The lateral confinement ratios (Column 24, Appendix B, Table B-1) for the
holed-out rod data range from 3 to 4.25, while that of the L/D 5 data subset is about 2, that of the L/D 4
and L/D 5.6 data is about 4, and that of the lower L/D data around 2.5. It is impossible to analytically
separate the effect of L/D from that of lateral confinement using this data. To do so, a clean set of data
was needed.

A smooth and tractable mathematical relationship was sought to model the effect of L/D on P/L.
Fortunately, an extensive collection of data could be assembled for tungsten alloy rods, density 17.6,
attacking RHA-like semi-infinite steel targets, hardness nominally HBN 269. Data from Bjerke, Zukas,
and Kimsey (1991) covered L/Ds below 1 at 2 km/s. Though for a slightly less dense alloy (X27,
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p17.3 g/cm3), it covers the low end of the range well, a necessity for determining a workable form. An
extensive database from Hohler and Stilp, collected in a report by Anderson, Morris, and Liulefield
(1992), and unpublished data of Farrand and his associates at ARL (1995) cover the region 1 < L/D < 32
for a wide range of velocities. Other data for short rods had either been generated by the author during
facility upgrade work or was made available by ARL researchers who had used Range 309A. As the
L/D < 0.5 Bjerke data was at a fixed velocity not too far from the nominal 1.6 km/s of the holed-out rod
work, the rest of the data was analyzed and used to generate P/Ls at 2 km/s to match it.

5.5 L/D Effect Surprisingly Small for Long Rods. The data so assembled was plotted and examined
for internal consistency. In the Hohler and Stilp data, the P/L numbers for three L/D 9 points as reported
in Anderson, Morris, and Littlefield (1992) fell well below the values for L/D 10 and greater numbers.
Since unit penetration is expected to monotonically increase with increasing L/Ds, this data subset was
disregarded (Anderson later provided corrections for this data). The L/D 10 data for four separate test
entries was examined and found to be homogeneous and was pooled. The disposition of Hohler and
Stilp’s L/D 32 data points was such as to lead me to believe that several points were uncharacteristically

low, resulting in an unrepresentative fit, so that data subset was not used either.

- Farrand’s data was for 10 < L/D < 30, firmly anchoring the other end of the sought-after distribution.
His data was generated with p = 17.6 g/cm3 65-g rods of lower strength than the X21C rods of this work,
so first a correction for rod strength was made. Farrand’s exceptionally clean data, pooled with the R309A
X21C data and the notes accompanying its statistical analysis appear in Appendix C, Table C-1. His
individual data sets could be fit well by multiplying the specific modified exponential fit to the 100-point
database (Equation 7) by a single scaling factor S. It was found that the effect of penetrator hardness on
penetration was weak at best, and possibly nil. A parabolic fit for P/L on L/D on Farrand’s long rod data
was good (Appendix C, Table C-2 and Figure C-1).

A data set from Perciballi (1992) for a short hemispherically nosed rod of 95W-3Ni-2Fe was used for
additional independent conﬁnnation. The RHA penetration numbers were fit by a second degree
polynomial and penetration at 2 km/s calculated. The overall rod length was reduced by one-sixth the
diameter to adjust the length to that of a flat-nosed rod and a P/L formed. This corrected WA vs. RHA
penetration number was reduced by a factor of the square root of the ratios of the densities to correct it

to a nominal density of 17.6 g/cm3.
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The P/Ls for these different data, corrected to 2 km/s, were then plotted. They can be seen to increase
slowly with decreases in L/D, until as L/D approaches 1, the curvature needed to fit the data increases
- rapidly. From a baseline P/L of about 1.2 at L/D 30, it is up to about 1.5 at L/D 5, then to 2 at L/D 1.
P/L continues up with increasing L/D in the region of Bjerke’s (lower density, lower strength!) data,
peaking at about 4 (with lots of scatter) at L/D 1/8, then dropping towards zero as the discs get thinner.
It is hard to plot the behavior on a single graph and still see the effects discussed. Figure 7 shows the
data plotted linearly, Bjerke’s L/D 1/4 and 1/8 data points being averages of the P/L values of 4 and 3,

respectively.

P/L versus L/D AT 2 km/s.
WA Flat-ended Right Circular Cylinders vs
RHA HBN 269 at Normal Incidence.

5
4
P
/P
L
2--
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O BJERKE TFS X27 DATA

A FITS TO HOHLER AND STILP DATA

V  EXTRAPOLATED FARRAND DATA
-------- PARABOLIC FORM (FARRAND DATA)

0 OTHER ROD DATA

Figure 7. Raw P/L vs. L/D relationship. Points usually represent calculated values and not individual
data.

Even so radical a function as that used by Planck to model black body radiation failed to rise quickly
enough from zero to be able to force a fit through both the rising and falling limbs of the data. With the
two lowest L/D points suppressed, that form was found to give the best fit of those tried. Figure 8 shows
that fit plotted to a logarithmic scale. It is interesting to note that the parabolic form, the left limb of
which matches Farrand’s data so well, lies within the 95% confidence limits of the "black body" form
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P/L versus L/D AT 2 km/s
WA Flat-ended Right Circular Cylinders vs
RHA HBN 269 at Normal Incidence

.01 0.10 1.00 10.00 100.00

Co

L/D

BJERKE TFS X27 DATA

FITS TO HOHLER AND STILP DATA
EXTRAPOLATED FARRAND DATA
OTHER ROD DATA

FITTED DATA

- O<apo

FIT TO FALLING LIMB DATA:

P/L = (-0.39*%[L/D]~-1.12)/(EXP(-0.22/[L/D])-1),
SD = 0.12, 14 POINTS, WITH 95% CONFIDENCE LIMITS.

Figure 8. P/L vs. L/D fit for L/D > 0.01, plotted on log-linear scale.

fit to the data set with the two lowest L/D points suppressed until the decreasing L/D takes on a value of
almost exactly unity. Over the interval for which they report data, this response is seen in another set of
Hohler and Stilp’s data (taken from the same reference) for shots into a significantly harder target steel.

In their work, Bjerke, Zukas, and Kimsey (1991) explain the peak in P/L vs. L/D as being due to a
change in penetration from rod-like behavior to plate-like behavior as the diameter-to-length ratio gets
large enough that the relief waves reach the penetration interface from the axial free surface sufficiently
before relief waves from the radial periphery do. In the rod-like regime, the rod erodes by radial outflow
of rod material, for L/Ds over about 1. Below L/Ds about 1/16, the plate rebounds off a normal incidence
target by momentum trapping. A mixed mode regime exists between the two, in which a progressively
larger central region of the penetrator is uneroded as the L/D decreases.
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Fitting the P/L data for various L/Ds as a function of velocity support the hypothesis of a fundamental
change in the slope of the P/L-vs.-velocity relationship at a L/D value near unity. The use of a simple
scaling factor serves well to adapt the modified exponential form to a wide variety of long rod and even
short rod P/L-vs.-velocity data, but it does an unacceptable job for the L/D 1 data, as a free fit seems to
want less curvature on the rising limb than for longer rod data. Applied to the Hohler and Stilp /D 1
data, the exponent was almost 1.

5.6. Lateral Constraint Effect Consistent With Recent Results of Others. With the L/D effect being
so weak, it is even more critical to account properly for the effect of lateral confinement. The fit
suggested by Pridgeon’s work indeed provided the lowest standard deviations to the R309A unit
penetration data augmented by Farrand’s data set. The form

PIL = flLID) x f{V) x (A + B/[Web/D]") 10)

is overparameterized, which is to say that there is a strong interdependence among the parameters when
fit. By setting some of them to values within their 95% confidence region and running a fit on the others,
the standard deviation only varies around the lowest value by a few percent. The final form chosen was,

PIL = (1 + 0.000906 x (30—/L/D])) x f{V) x (0.807 + 1/([Web/D}%)), an

where Web/D is the target lateral web, and the form constrained to L/D < 30. In most cases, Web/D is
just half the target width, divided by rod diameter. f{V) is (the by now familiar) Equation 7. The standard
error of the estimate of this fit is 0.093, with 69 data points. The residuals and notes regarding the fit are
presented in the dataset in Appendix C-1. In this form, the two 1’s and the powers of 2 are set arbitrarily,
near values they want to take on in a free fit. Rather than increasing, the standard error of the estimate
actually decreases by about 1% under these constraints.

The residuals to this fit are plotted against each independent factor (scatter plots) in Figure 9. One
measure of a good fit is that the residuals are well disposed about the zero line over the entire interval.
This holds for the lateral web case. There may be a very slight rising trend in the residuals plotted vs.
L/D as L/D values increase beyond 20. A dipping and rising could possibly be discerned in the residuals
plotted vs. velocity. Certainly, essentially all of the residuals are positive below about 1.4 km/s, with the
rest of the data more or less well disposed except for a few outliers. Thus, the fit should not be relied
on below 1.4 km/s. Since the primary area of interest in this work is 1.6 km/s, no further effort to
massage the data was undertaken.
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Figure 9. Scatter plots of residuals to multiple regression.
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The lateral constraint term in Equation 11 was compared with the data of Pridgeon (1995) and of
Littlefield et al. (1995) in the form of a graph, Figure 10. Given the limited data in both their sets, and
- the limited range, there is reasonable agreement. The confidence region on each parameter was rather
tight in all fits, so that, for example, there is no question that each fit wants the power term given.
However, altering or adding only a few points in each data set could cause that circumstance to alter.
Remember that the "lateral web" term is just half the target diameter where the datum could not be
measured. Thus, Web/Dp is just essentially 1/2 x D/D,, t and p denoting target and penetrator,
respectively. The three sets of data reflect three different target deformation situations. In the case of a
circular target struck well-centered (Littlefield et al. 1995), the plastic deformation is uniform in any
circumferential path. In a square target struck well centered (Pridgeon 1995), the plastic work is confined
to four zones around the thinnest radial webs. In the case of a square target struck closer to one edge than
any other (this work), the plastic deformation would occur predominantly in only one zone, where the web
was thinnest. There is too little good data in my work to support any conclusions regarding this effect,
but it is interesting and important and needs further study.

It is comforting to note that the effect of lateral confinement determined in this work is small until
the lateral web drops below about 4, as the cursory examination of the data suggested, below which target
penetration rises steeply. Note that the correction term for lateral confinement in this fit is independent
of L/D, which it probably should not be. However, we will use this fit primarily at L/Ds of 4 and above,
where discrepancies should be reasonably small. Note also that the fitted parameters are independent of
velocity, which may or may not be true.

5.7 Predicted Behavior for Large Targets. Equation 11 can now be used to generate expected
performance predictions for X21C rods attacking very large (width and height) RHA at normal incidence.
Being (assumed) independent, the individual factors derived from the multiple regression may be used to
correct individual data for particular effects. Figure 11 shows the correction for lateral confinement
applied to the baseline data set, which was plotted earlier in Figure 4. The raw data are plotted as open
symbols, and the corrected data are plotted as filled symbols.

Observe that the overall scatter in the data is reduced, a sign that the influence sought is actually there.
The corrected L/D 4 and 5 data converge towards the origin, more in line with reality than the paraliel
slopes in the raw data. Further, the correction to the L/D 5.6 data brings its slope parallel and essentially
coincident to the L/D S fit. This is an improvement over the raw data, in which the raw L/D 5.6
penetrations lay between the raw L/D 5 and 4 data, contrary to expectations.
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P/Po versus TARGET LATERAL WEB
X21C at 1500 m/s versus RHA HBN 269 at Normal Incidence

LATERAL WEB/ROD DIAMETER

O RAW EXPERIMENTAL DATA OF PRIDGEON [ARL, 1995]

- P/Po = 0.986 + 3.585/[WEB/D]~2, SD = 0.0044, 5 POINTS
[0 CORRECTED DATA OF LITTLEFIELD, et al [DRAFT, IBS, 1995]
-------- P/Po = 0.696 + 0.941/[WEB/D]~0.502, SD = 0.03, 9 POINTS
—— MULTIPLE REGRESSION TO R309A, FARRAND DATA

P/Po = (0.807 + 1/[WEB/D]1"2)/0.811

P/Po = 1 FOR EACH CURVE AS FOLLOWS:
PRIDGEON: FIT BY BURKINS OF ARL, P = 0.1346*V -104.3.
LITTLEFIELD: DATA OF WOOLSEY IN LITTLEFIELD et al.
THIS WORK: VALUE OF FIT AT WEB/D = 15 (FOLLOWS WOOLSEY) .

Figure 10. Increase in penetration with decrease in lateral confinement at 1,500 m/s.

Note, however, that the correction to the L/D 5 data seems to be excessive at lower velocities, as
suggested by the velocity scatter plot (see Figure 9). The reduction in penetration should diminish as
velocity decreases. This is undoubtedly the result of assuming that the influence of velocity can be
corrected by simple vertical scaling of the a particular sigmoid curve. This would be less the case if the
correction scheme allowed the baseline curve to be shifted horizontally at the low end of the velocity

regime rather than vertically, for example, consistent with the two-parameter analytic formulation (after
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PENETRATION versus VELOCITY
CORRECTED FOR TARGET EDGE EFFECTS
X21C Rods versus RHA HBN 269 at Normal Incidence
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N ———— ———
E 1501 A 100x20.00 mm 555 g SOLID ROD
T O 80x20.00 mm 444 g SOLID ROD
R Lo 100x17.79 mm 444 g SOLID ROD
A
g 1001 FITS ??_RAW DATA:
o} - - L =100, P = 130.2*V - 69.3,
N SD = 2.5, 5 POINTS

- L= 80, P=130.2*V -100.9,

( 807 SD = 2.5, 3 PTS, SLOPE FIXED
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) . (Fit not good below 1.5 km/s)
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Figure 11. Penetration data corrected for target lateral confinement.

Lance and Odermatt) presented by Rapacki et al. (1995) in their paper at the 15th International
Symposium on Ballistics.

Nevertheless, the correction scheme appears good in the region of interest, between about 1,500 and
1,800 m/s. This is reflected on the graph by using a solid line for the final form only in the areas of
interest. The corrected data, including that of the holed-out rod, are replotted at finer scale in Figure 12.
A line is fit to the holed-out rod data, and the standard deviation of the fit decreases from 13 mm to
8 mm, again suggesting that reduced lateral confinement had a positive correlation to increased
penetration. This decreased scatter contributes to increased confidence in the conclusions drawn, but in
our case, as discussed later, the scatter is still poor. The values that will be used for comparison among

the various cases are those obtained at 1.6 km/s. These are tabulated in the discussion.
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PENETRATION versus VELOCITY
RAW AND CORRECTED HOLED-OUT ROD DATA
OVER CORRECTED BASELINE PENETRATION
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Figure 12. Penetration of holed-out rod compared with baseline. (Corrected values.)

6. INTERPRETATION

With the corrections, the penetration of the 100-mm-long X 17.79-mm-diameter, 444-g rod is the same
as that of the 100-mm x 20-mm-diameter, 555-g rod, suggesting that length is the predominant factor, not
diameter, in this velocity regime.

The penetration of the L/D 5 100-mm-long x 20-mm-diameter, 555-g rod at 1.6 km/s is 23% greater
than that of its L/D 4 80-mm-long % 20-mm-diameter cousin, showing the small effect (3%) of L/D after
the 20% effect of length is removed. The penetration of the holed-out rod is only a bit higher than that
of the equal-mass L/D 4 solid rod, implying poor performance for the holed-out rod. Given the scatter
in the holed-out rod data, there is some likelihood that additional shots would cause significant changes
in the location and slope of the fitted line, and it cannot be stated confidently that the 20% longer
holed-out rod actually performs any better than its equal-mass L/D 4 solid cousin.

John Zook (now retired) and Konrad Frank of ARL collaborated to generate predictions on the

penetrations to be expected in these cases using the T-A model. In this model, the holed-out rod is
modeled as a solid rod of the same outside envelope and lower mass (density). The overall relationship
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among the results of the T-A model was in good agreement with the overall relationship observed, though
there is sufficient disparity in the absolute numbers that the model is clearly too simple. Table 1 shows
the results (Zook and Frank 1991).

Table 1. Corrected Fit to Data Compared With Tate-Alekseevskii Predictions of Zook and Frank.
Velocity is 1.6 km/s. Zook and Frank used a penetrator density of 17.3 g/cm3 vis-a-vis
measured values of 17.65 g/cm3 in this work.

Case Corrected Penetration | T-A Pred. Penetration

(mm) (mm)

100-mm-long x 20-mm-diameter solid rod,

355g,LIDS 122.1 105

100-mm-long x 17.84-mm-diameter solid rod,

444 g, LD 5.6 118.6 102

80-mm-long x 20-mm-diameter solid rod,

444 g, L/D 4 100.5 88

mglm-long X 20-mm-diameter holed-out rod, 106.6 86

Both the model and experiment showed only a slight decrease in penetration for the 100-mm-long
solid rod as diameter dropped from 20 mm to 17.84 mm (16.70 mm in the T-A model), while mass
dropped 20% and L/D increased from 5 to 5.6. Both the model and experiment showed essentially
identical performance of the 80-mm-long L/D 4 solid rod and its equal-mass, 100-mm-long counterpart
of lower apparent density.

Kimsey’s (1995) computational effort was undertaken to understand the physical mechanisms involved
and to improve the models. Runs were done at 1.6 km/s to match the experiments, and at 2.5 km/s to see

if the performance would improve at higher velocities.

As with the corrected data, at 1.6 km/s, CTH predicted that the L/D 4 solid rod and holed-out 444-g
rods would perform essentially the same, while the L/D 5, 555-g solid rod would penetrate approximately
20% better. CTH only slightly underpredicted penetration for all 1.6-km/s cases. At 2.5 km/s, where no
experimental data is available, CTH shows about a 10% deeper penetration for the drilled-out rod over
the equal-mass L/D 4 solid rod. The results are underpredicted compared to the curves for corrected
experimental data. See Figure 13.
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COMPUTATIONAL RESULTS AND CORRECTED DATA

X21C Short Rods versus RHA HBN 269 at Normal Incidence
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P = 124.04*Vv - 91,71, SD = 8, 4 POINTS

(RN N4

MULTIPLE REGRESSION, D = 20 mm

L= 80 mm
L = 100 mm

COMPUTATIONAL RESULTS
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Figure 13. Numerical predictions compared with corrected data.
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7. TUBULAR PENETRATOR INSIGHTS

Why is the holed-out rod underperforming compared with a simple reduced-density model? The
penetration mechanics of the reduced-mass penetrator concept are related to the impact dynamics of
tubular penetrators, which have been studied since at least 1960. Frank and McLaughlin (1978) have
reviewed and summarized most of the early tubular penetrator research conducted at ordnance velocities.
Payne (1968) and Sanders (1970) report ballistic test data for hypervelocity impact of thick-walled tubes
(ratios of inside to outside diameter, w, from 0.5 to 0.65) of steel, aluminum, and titanium impacting
aluminum and steel targets. Hough (1982) used the HULL code to compare penetration-time histories of
RHA tubes, w = 0.8 and 0.6, as well as a rod attacking RHA at 1.2, 1.6, and 2.0 km/s out to 30 ps.
Recently, Franzen of California Institute of Technology (1987), and Franzen and Schneidewind (1991)
reported results of analytical modeling, hydrocode calculations, and ballistic tests of hypervelocity tubular
penetrators. Franzen observed that the penetration depth per consumed penetrator length is a steady-state
process which is dependent on the ratio of inner to outer tube diameter, the ratio of tube material to target
material density, and impact velocity.

In the tubular penetrator work cited, the presence of a zone of reduced pressure at the core of the
penetration reduces the relative erosion rate of the target. The extensive computational work by Kimsey
reveals that the holed-out rod is underperforming precisely because of the hole pattern needed to decrease
the penetrator mass. The reduction in pressure occurs in an annular zone away from the centerline, but
the effect is the same: reduced relative erosion rate of target to penetrator. The reduction in pressure at
the penetrator-target interface occurs at a reduced radius compared to that of a solid rod. Beyond this
radius, the material from the periphery of the holed-out rod impacts too far away for the pressure under
that material to influence the central penetration in progress. The peripheral material is, in effect, wasted.
In the tubular penetrator, if the holes could be made small enough, penetration would not suffer much.
In the holed-out rod, if the area of the holes is big enough to achieve a meaningful reduction in apparent
density, it is accompanied by a significant reduction in penetration.

The central core of the holed-out rod acts as a lower mass, higher L/D rod, which has a slightly lower
penetration per unit length than rods of a lower aspect ratio. The material from the outer regions, rather
than contributing to penetration, appears to just ride on the surface of the eroded rod material, flowing

radially out from the core and not contributing to penetration.
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8. CONCLUSIONS AND RECOMMENDATIONS

In this work the penetration of a reduced-mass (reduced apparent density) low L/D penetrator, achieved
by drilling a symmetric pattern of eight holes parallel to the rod’s axis, was compared with that of several
comparable solid tungsten alloy rods. The central trend of the data for the holed-out rod fell only slightly
above the depth expected for rods of equal mass and equal outside diameter. Given the increase in sabot
mass needed to carry this additional length, there is a negative incentive to lengthen the rod by holing it
out. This performance is consistent with independently generated predictions by Zook and Frank (1991)
and with CTH runs by Kimsey (1995).

The approximately 10% increase in penetration over the equal-mass, shorter cousin at 2.5 km/s is
interesting, but even then, such a gain could be achieved by lengthening the baseline rod proportionately
and it would still be 10% shorter than its holed-out cousin. It is doubtful that the additional parasitic
(sabot) mass needed to launch the longer holed-out version could be reduced enough that the throw-weight
of a holed-out launch package could be brought under that of a monolithic rod of equal terminal ballistic

performance.

There is one speculative advantage to the holed-out penetrator concept that remains untested. Reactive
armor acts to deform the rod laterally, imposing a finite lower limit on rod diameter. While having the
same cross-sectional area and hence the same strength in lateral shear, the higher bending stiffness of the
holed-out rod concept should pemmit it to survive under higher lateral bending forces than the longer and

thinner option.

Given the limited number of holed-out rod data and their large scatter, even after corrections were
made for target edge effects, conclusions cannot be drawn with any real confidence. The 95% confidence
region around a straight-line fit to the holed-out rod data engulfs essentially the entire quadrant, in contrast
to the 95% confidence limits drawn around straight-line fits to the 80-mm- and 100-mm-long solid rod
data. See Figure 14. Confidence limits are drawn around the straight-line fit to the holed-out rod data
at the one-in-two, one-in-four, and one-in-eight levels. These represent regions outside of which a
straight-line fit to a data set represented by the four shots could be expected to fall at these probability
levels. Thus, while it is reasonably certain that the holed-out rod and 80-mm solid rod data are from
populations with indistinguishable central trends, there is still approximately one chance in eight that more
shots would shift the mean to a point where it is indistinguishable from the 100-mm-long solid rod data.
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CONFIDENCE LIMITS ARQUND STRAIGHT-LINE FITS
TO L/D 4, 5, AND HOLED-OUT ROD DATA

CORRECTED DATA
100%20.00 mm 555 g SOLID ROD
100x17.79 mm 444 g SOLID ROD
80x20.00 mm 444 g SOLID ROD
100x20.00 mm 444 g HOLED-OUT
FIT TO CORRECTED HOLED-OUT
H-ROD CLs, S.L. FIT
SOLID 95% CLs, S.L. FIT

ZO0O0HHPpPITAIEZMEMWY

MULTIPLE REGRESSION, D

= 80 mm
L =100 mm

E

~8 8~

VELOCITY (m/s)

Figure 14. Confidence intervals around straight-line fit to holed-out rod data.

Should it be desired to consider pursuit of this matter at full-scale, additional reduced-scale shots
would be very wise. This would allow an attempt to be made to eliminate the source of the data scatter
upon which such a scale-up decision need be made. They should be fired at two velocities: as high as
possible and at a reduced velocity to maximize the velocity spread and hence reduce the fan-out of the
confidence regions around the currently limited data set. Additionally, depending on observed data scatter,
L/D 5 drilled-out rods should be fabricated and shot at 2.5 km/s to verify the CTH predictions. Then
sufficient long drilled-out rods should be fired at as high a velocity as practical to measure both the
sought-after performance increase and its variability.

Full-scale shots of 20-mm diameter X21C tungsten alloy holed-out rods could profitably be conducted
at L/Ds of as little as 10, for which the P/L values have risen only about one-third above that of the
very-long rod value (see Table 2). Long holed-out rods could possibly be fabricated by inertial welding
two L/D 5 holed-out rods, possibly cutting fabrication costs significantly.

For an approximately L/D 10 900-g rod, two types of launch platforms are available. Full-scale
laboratory guns at BRL can be used, using current laboratory sabot technology to achieve a maximum of

28




Table 2. Projected Solid Rod RHA Unit Penetration. (From multiple regression, ratio of
target lateral web to rod diameter of 15.)

L/D P/L at 1.6 km/s | P/L at 2.5 km/s

5 1.221 1.815
10 1.062 1.579
30 0.779 1.159

about 2.2 km/s. For higher velocities, a large-bore two-stage light-gas gun would be necessary. For
example, the one at the Amold Engineering Development Center’s von Karman G-Range could deliver
striking velocities in excess of 3.0 km/s. Experimental firings would require the design of a first cut sabot
for both the solid and the holed-out rod, thus providing a firmer basis for comparisons of systems

performances.

The correspondence between experiment, a simple physical model, and the sophisticated finite
difference code CTH suggests that there is little likelihood of unexpected results if additional
experimentation is undertaken. However, this effort has resulted in advances in understanding the

penetration mechanics of holed-out rods.
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APPENDIX A:

HYPERVELOCITY PENETRATION DATABASE
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Table A-1. Database and Notes

€DIR PENETRATIONGDIR RHA BY WA@TBL_RODS_FAIR CUM 89

0 ROW ENTRY 1 STRIKING 2 UNIT 6 SOURCE

NO. SEQ.  VELOCITY  PEN. TABLE
(km/s) (P/L) tbl_rods_
1 22 0.527  0.042 _HandS D17_6_10
2 23 0.642  0.066 _HandS D17_6_10
3 77 0.665  0.063 _TATE 12
4 24 0.685  0.090 _HandS_D17_6_10
5 70 0.745  0.088 _TATE 12
6 84 0.785  0.128 _TATE 12
7 78 0.805  0.140 _TATE 12
8 71 0.885  0.168 _TATE 12
9 85 0.890  0.172 _TATE 12
10 86 0.940  0.239 _TATE 12
11 25 0.994  0.392 _HandS D17_6 10
12 79 1.025  0.266 _TATE 12
13 26 1.036  0.398 _HandS D17 6 10
14 87 1.060  0.345 _TATE 12
15 72 1.070  0.326 _TATE 12
16 80 1.075  0.343 _TATE 12
17 27 1.079  0.461 _HandS_D17_6_10
18 89 1.155  0.423 _TATE 12
19 73 1.180  0.441 _TATE 12
20 28 1.194  0.567 _HandS_D17_6_10
21 74 1.275  0.547 _TATE 12
22 14 1.291  0.513 _GFS_83
23 29 1.309  0.696 _HandS_D17_6_10
24 81 1.360  0.630 _TATE 12
25 30 1.382  0.754 _HandS D17_6_10
26 82 1.445  0.735 _TATE 12
27 75 1.470  0.758 _TATE 12
28 13 1.494  0.719 _GFS_83
29 100 1.500  0.930 _BJERKE_89
30 31 1.509  0.908 _HandS_D17_6 10
31 17 1.520  0.848 _MAGNESS_mat
32 83 1.530  0.938 _TATE 12
33 18 1.533  0.863 _MAGNESS_mat
34 32 1.533  0.929 _HandS_DI17_6_10
35 76 1.535  0.829 _TATE 12
36 16 1.551  0.839 _MAGNESS mat
37 15 1.567  0.990 _MAGNESS mat
38 33 1.588  0.971 _HandS_D17_6_10
39 99 1.600  1.020 _BJERKE 89
40 34 1.648  1.028 _HandS_D17_6_10
21 98 1.655  1.120 _BJERKE_89
42 35 1.752  1.113 _HandS _D17_6_10
43 36 1.830  1.185 _HandS D17 6_10
44 1 1.865  1.119 _GFS 83
45 37 1.879  1.200 _HandS D17_6_10
46 96 1.900  1.232 _SORENSEN 88
47 39 1.915  1.266 _HandS D17_6_10
48 38 1.927  1.197 _KandS _D17_6_10
49 40 1.939  1.236 _HandS D17_6_10
50 41 1.994  1.266 _HandS D17 6 10
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Table A-1. Database and Notes (continued)

@DIR_PENETRATION@DIR RHA BY WAQTBL_RODS_FAIR CUM 89 (Cont.)

0 ROW ENTRY 1 STRIKING 2 UNIT 6 SOURCE

NO. SEQ. VELOCITY PEN. TABLE
(km/s) (P/L) tbl_rods_
51 97 2.040 1.293 _SORENSEN_88
52 89 2.050 1.274 _SORENSEN_88
53 95 2.060 1.279 _SORENSEN_88
54 42 2.061 1.293 _HandS D17 6_10
55 90 2.070 1.263 SORENSEN 88"
56 43 2.073 1.315 _HandS_D17_6_10
57 44 2.109  1.296 _HandS_D17_6_10
58 92 2.120 1.297 _SORENSEN_88
59 69 2.140 1.317 _GFS_88 fair
60 45 2.152 1.315 _HandS_D17_6_10
61 66 2.180 1.306 _GFS_88 fair
62 91 2.220 1.373 _SORENSEN_88
63 46 2.224 1.345 _HandS D17_6_10
64 19 2.250 1.304 _CUADROS_DSO
65 93 2.250 1.403 _SORENSEN_88
66 94 2.280 1.400 _SORENSEN_88
67 68 2.330 1.412 _GFS_88_fair
68 9 2.365 1.356 _GFS_83
69 8 2.409 1.415 _GFS_83
70 65 2.420 1.498 _GFS_88_fair
71 47 2.448 1.438 _HandS_D17_6_10
72 48 2.606 1.471 _HandS _D17_6_10
73 3 2.653 1.466 _GFS 83
74 49 2.715 1.480 _HandS D17_6_10
75 2 2.742 1.463 _GFs_83
76 11 2.746 1.448 _GFs_83
77 50 2.788 1.486 _HandS D17 6_10
78 51 2.848 1.468 _HandS_D17_6_10
79 58 2.890 1.520 _GFS_88_fair
80 59 2.900 1.459 _GFS_88 fair
81 20 2.910 1.500 _CUADROS_DSO
82 57 2.960 1.529 _GFS_88_ fair
83 61 2.980 1.511 _GFS_88 fair
84 63 2.980 1.505 _GFS_88 fair
85 52 2.982 1.480 _HandS _D17_6_10
86 62 2.990 1.504 _GFS_88_fair
87 60 3.020 1.471 _GFS_88 fair
88 64 3.020 1.505 _GFS_88 fair
89 67 3.050 1.496 _GFS_88 fair
90 6 3.335 1.524 _GFS_83
91 7 3.449 1.550 _GFS_83
92 53 3.467 1.559 _HandS_D17_6_9
93 10 3.580 1.549 _GFS 83
94 54 3.709 1.553 _HandS_D17_6_9
95 21 3.730 1.640 _CUADROS_DSO
96 55 3.939 1.604 _HandS_D17_6_9
97 56 4.008 1.552 _GFS_88 fair
98 5 4.398 1.586 _GFS_83
99 4 4.415 1.592 _GFs_83
100 12 4.525 1.591 _GFS 83
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Table A-1. Database and Notes (continued)

@DIR_PENETRATION@DIR RHA BY WAGTBL_ RODS_FAIR CUM 89 (Cont.)

NOTES:

1.

10.

Table is provided without any warranty, express or implied. All data
are unclassified, unlimited distribution. Notify me of any errors at
gsilsby@tbd2.arl.mil or 410-278-6012 or FAX 410-278-6564. Graham
Silsby, 1LMB, TED, WTD, ARL.

To firm up the final trend in various fits, the highest three velocity
data points were weighted by a factor of three.

Data in tables ..._HandS ... are data of Hohler and Stilp digitized from
graphs in various sources. This data is available in Anderson, Morris,
and Littlefield [Jan 92], although the L/D 9 data in the cited- reference
differs from that digitized and the cited reference includes one apparant
outlier excluded from the graphs.

Data in tables ..._TATE ... are data of Tate et al and are available in
Anderson... [op. cit.].

Data in table ...GFS 83 are data of Silsby for 46 and 98 gram L/D 23
Kennametal W10 fully threaded rods attacking 6" and 8" wide RHA bar
targets HBN 269, reported in the 8th Intl. Symp. Ball. and are available
in Anderson... [op. cit.].

Data in table ..._SORENSEN 88 are data of Sorensen for 1 and 2 kg L/D 20
TFS X27 rods attacking stacks of 6" RHA HBN 269 2’ square, reported in
an unclassified paper entitled "High Velocity Penetration of Steel
Targets, " by Sorensen, Kimsey, Silsby, Scheffler, Sherrick, and de
Rosset in the classified session of the 1989 Hypervelocity Impact
Symposium and are available in Anderson... [op. cit.].

Data in table ..._GFS_88_fair are data of Silsby by AEDC VKF G-range
personnel for 125 and 250 gram L/D 15, 20 and 30 TFS X27 rods attacking
stacks of 3" RHA retempered to HBN 269, 1’ square, reported in an
unclassified paper entitled "High Velocity Penetration of Steel
Targets," by Sorensen, Kimsey, Silsby, Scheffler, Sherrick, and de
Rosset (as well as AEDC VKF G Range data reports) in the classified
session of the 1989 Hypervelocity Impact Symposium-and are available in
Anderson... [op. cit.].

Data in table ... _Bjerke 89 are data from ARL’'’s Bjerke, private communi-
cation, 1989.

Data in table ... MAGNESS mat are data from ARL’s Magness and associates
from appropriate parts of thier Materials Program, private communication,
1989.

Data in table ... CUADROS DSO are from 800 and 900 gram long rod shots
for Jaimie Cuadros of the General Dynamics Valley Systems Division at
GM’s Delco Santa Barbara Operations two-stage light gas gun, private
communication, 1984.
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APPENDIX B:

ARL RANGE 309A X21C ROLLED HOMOGENEOUS ARMOR
NORMAL-INCIDENCE PENETRATION DATABASE
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APPENDIX C:

- ANALYSIS DETAILS
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Table C-1. Pooled Data Set of R309A and Farrand, With Notes

GTE VARIOUS HARDNESSES HEMI-NOSE, FLAT BASE LONG RCCS

' SEMI-INFINITE’ RHA NORMAL PENETRATION DATA,
X21C FLAT NOSE, FLAT BASE SHORT RIGHT CIRCULAR CYLINDERS AND

RANGE & PEN. PEN. STRIK. MN. LAT. RESID-
LINE SHOT HRD. L/D VELOC. WEB/DIA. P/L UALS
NO. NO. (HRC) (km/s) (mm)
1 R309A 167 47 1.00 1.604 3.06 1.519 -0.034
2 158 47 0.97 2.083 2.66 2.206 0.010
3 157 47 0.99 2.205 2.39 2.542 0.191
4 166 47 1.00 2.458 2.77 2.603 0.257
5
6 R30%A 744 47 2.00 1.548 2.11 1.590 -0.004
7 745 47 2.01 1.746 2.71 1.650 -0.128
8
9 R309Aa 729 47 2.99 1.023 2.50 0.858 0.359
10 730 47 3.00 1.497 2.40 1.442 0.070
11 502 47 2.96 1.752 3.40 1.597 -0.048
12
13 R309A 499 47 3.98 1.368 3.86 1.113 0.145
14 506 47 4.00 1.497 3.20 1.267 0.037
15 512 47 3.98 1.501 4.20 1.241 0.059
16 515 47 3.99 1.509 4.20 1.254 0.059
17 361 47 4.01 1.587 3.70 1.309 -0.033
18 500 47 3.98 1.637 4.18 1.360 -0.033
19 746 47 4.02 1.651 2.51 1.410 -0.166
20 501 47 3.97 1.684 3.40 1.465 -0.043
21 360 47 3.98 1.702 3.75 1.532 0.026
22
23 R309A 268 47 5.00 1.176 2.50 0.833 0.136
24 267 47 5.00 1.195 2.35 0.893 0.148
25 261 47 5.00 1.399 2.10 1.010 -0.163
26 269 47 5.00 1.412 1.95 1.124 -0.117
27 249 47 5.00 1.519 2.15 1.320 -0.073
28 248 47 5.00 1.588 2.05 1.369 -0.181
29
30 R30%Aa 274 47 5.63 1.540 3.94 1.210 0.012
31 276 47 5.63 1.573 4,22 1.210 -0.026
32 275 47 5.62 1.582 3.93 0.990 -0.272
33
34 R30%A 747 47 10.22 1.485 5.62 0.897 -0.045
35
36 R110E 4034 39 9.83 1.473 9.60 0.900 -0.012
37 Rc 39 4035 39 9.83 1.463 9.60 0.870 -0.028
38 GTE 4036 39 9.83 1.477 9.60 0.840 -0.077
39 4037 39 9.83 1.477 9.60 0.900 -0.017
40 4038 39 9.83 1.479 9.60 0.850 -0.070
41 4039 39 9.83 1.475 9.60 0.880 -0.035
42 4040 39 9.83 1.459 9.60 0.860 ~-0.033
43
44 R110E 3981 39 14.83 1.651 11.00 0.950 -0.048
45 Rc 39 3976 39 14.83 1.838 11.00 1.190 0.032
46 GTE 3982 39 14.83 1.839 11.00
47 3981 39 14.83 1.944 11.00 1.230 0.004
48 3984 39 14.83 1.995 11.00 1.250 -0.003
49
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Table C-1. Pooled Data Set of R309A and Farrand, With Notes (continued)

RANGE & PEN. PEN. STRIK. MN. LAT. RESID-
LINE SHOT HRD. L/D VELOC. WEB/DIA. P/L UALS
NO. NO. (HRC) (km/s) (mm)
50 R110E 3124 39 19.83 1.169 12.12 0.430 0.027
51 Rc 39 3125 39 19.83 1.331 12.12 0.570 ~6e-04
52 GTE 3126 39  19.83 1.484 12.12 0.740 0.003
53 3127 39  19.83 1.573 12.12 0.850 0.022
54
55 R110E 2493 39  24.83 1.078 13.06 0.300 -2e-04
56 Rc 39 2494 39 24.83 1.315 13.06 0.560 0.042
57 GTE 2495 39 24.83 1.498 13.06 0.760 0.057
58 2496 39 24.83 1.626 13.06 0.890 0.068
59
60 R110E 2705 41 9.83 1.596 9.60 0.990 -0.080°
61 Rc 41 2706 41 9.83 1.297 9.60 0.660 -0.011
62 GTE
63
64 R110E 2563 41  29.83 1.077 13.88 0.270 -0.022
65 Rc 41 2566 41  29.83 1.097 13.88 0.280 -0.028
66 GTE 2564 41  29.83 1.286 13.88 0.520 0.043
67 2567 41  29.83 1.312 13.88  0.540 0.038
68 2565 41  29.83 1.504 13.88 0.750 0.058
69 2569 41 29.83 1.536 13.88 0.770 0.048
70 2568 41  29.83 1.598 13.88 0.810 0.032
71
72 R110E 1974 44 9.83 1.079 9.60 0.450 0.045
73 Rc 44 2037 44 9.83 1.102 9.60 0.480 0.051
74 GTE 2038 44 9.83 1.286 9.60 0.710 0.053
75 1975 44 9.83 1.298 9.60 0.690 0.017
76 2039 44 9.83 1.499 9.60 0.940 -0.007
77 1976 44 9.83 1.527 9.60 0.970 -0.013
78 2040 44 9.83 1.696 9.60 1.130 -0.053
79
80 R110E 1978 44  14.83 1.086 11.00 0.380 0.017
81 Rc 44 2041 44 14.83 1.097 11.00 0.400 0.027
82 GTE 1979 44 14.83 1.291 11.00 0.590 0.006
83 2042 44 14.83 1.297 11.00 0.640 0.049
84 1980 44 14.83 1.500 11.00 0.810 -0.024
85 1981 44  14.83 1.682 11.00 1.040 0.012
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Table C-1. Pooled Data Set of R309A and Farrand, With Notes (continued)

NOTES:

1. TBL_17_6 MULT is from TBL_HROD 1, with extraneous data deleted, and R110E
high L/D data of Farrand added, seeking the influence of target extent and
closeness to the nearest edge on penetration depth while fitting P/L vs
V wvs L/D. It contains all R309A data on Teledyne Firth Sterling X21C
rods swaged 15% by the large bar process and aged at 500 C for 1 hr, vs
semi-infinite rolled homogeneous armor nominally Brinnel 269 (HBN 269)
at normal incidence. R309A data 1s complete through 1994.

2. A number of judgement calls have been used to maximize the utility of the
data set.

3. A lateral web thickness of W/2, W the target minimum lateral dimension,
has been assigned in shots where this datum has not been measured.

4. R110E data has been used to provide sufficient long-rod penetrator data
with large lateral webs that the fitting functions will have a credible
baseline. The rods were of slightly different composition and proces-
sing than the X21C short rods for which the fit is sought, but because
their density is 17.6 g/cm”3 and their strengths are similar, their
semi~infinite RHA penetration depths should be comparable. They were
shot into one or two 6" cubes of RHA (nominally HBN 2693) with air
behind. Nothing can be done to account for the difference in axial
constraint, although this effect is thought to be small. The L/D was
adjusted down by 1/6 to account for the hemispherical nose, and nominal
diameters were computed from the nominal mass and density.

5. After trying various forms suggested by examination of the effects of
individual factors on various data sets, the following multiple
regression yielded the best fit (SD = 0.094, 69 data, coefficients
highly correlated):

P/L = (0.940 + 0.000893*(30-[L/D])"2)*(0.852 + 0.960/([WEB/D]}"2))*(£(V)),
where £(V) = (1.236+0.0875*V)/(1+117*exp((-3.5)*V)).

To eliminate the correlation, the 0.940 and 0.960 terms were arbitrar-
ily set to 1.000 and the function refit, with SD = 0.093,

P/L = (1 + 0.000906*(30~[L/D])"2)*(0.807 + 1/([WEB/D]"2))*(£(V)).

In this form, the error minimum is rather tight around the two
parameters, which have 95% confidence regions of 0.000767 < Cl <
0.001044 and 0.7593 < C2 < .8546. In settling on this form, the effect
of rod hardness on this data set was found to be essentially zero and
was suppressed. Using a power term in the web term of 1 rather than 2
increased the SD unacceptably.

6. On checking shot 268 to see if it should be treated like a laminated tar-
get, the residual on the above fit was +0.136. Post-shot, the target
block was nearly split in two by a crack in the midplane (perpendicular
to the shot line), with some corroded surfaces indicating that it was
pre-cracked. The residual on shot 269 to the above fit was -0.117.
Post~shot, the target displayed a thin web with large cracks. The two
offsetting residuals suggest that this is unexplainable variation.
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Table C-2. Fitting Parameters for Individual and Multiple Regression

'S’ vs HARDNESS vs L/D
With Weighting Factors
(Number of Data)

SOURCE HARD. L/D INDIV. NO. SD of MULT. FIT
(ERC) s’ DATA FIT rs’
DATA 39 10 1.0710 7 0.025 1.0710
DATA 39 15 0.9831 4 0.033 0.9768
DATA 39 20 0.9057 4 0.015 0.9096
DATA 39 25 0.8964 4 0.014 0.8692
DATA 41 10 1.0540 4 0.033 1.0833
DATA 41 30 0.8567 7 0.027 0.8681
DATA 44 10 1.1200 7 0.011 1.1018
DATA 44 15 0.9996 6 0.027 1.0077
MULT REGRESS FIT 47 30 0 0.018 0.9051
NOTES:

1. The tabulated ’Ss’ are the constant factors obtained for the specific
modified exponential fit to Farrand’s P/L vs Velocity data for 17.6
g/cm”2 tungsten long rods vs 6" RHA cubes as follows:

P/L = S$*((1.236+0.0875*x)/(1+117*exp((-3.5) *x)))

2. Examination of the HRC 39 data suggests essentially no difference between
using a 2nd order polynomial (parabolic) fit or a hyperbolic fit (A +
B/ (L/D)) fit in P/L vs L/D. The former was chosen because it provides
a (perhaps too) rapid close on a lower bound on the function, good
match in curvature in the region of the data, and a less steep slope
beyond the data. Various parabolic fits were tried. The confidence
regions on the parameters are sufficiently broad (the data scatter is
large and the data scant) that arbitrarily setting the minimum at L/D =
30 (which probably makes some physical sense) and assuming no variation
in the location of this minimum L/D with rod hardness should be ade-
quate to model the data without distorting the sought-after result
(to adjust the penetration to that of an HRC 47 rod alloy). Only three
hardness were used in the test, so that at best a linear model in rod
hardness is all that can be justified.

3. Thus, the model S = A*(f-30)**2 + B*h + C) was fit by multiple regres-
sion, with numbers weighted by the number of data used in obtaining the
original fitted "Ss’. S is the multiplier on the modified exponential
form sought here, A, B, and C are fitting parameters, h is the rod
hardness and f the L/D (fineness ratio). When curves generated by this
function are compared with fits to individual data subsets, the results
are essentially indistinguishable for all but two cases.

4. The final form is § = 0.000538*(£-30)"2 + (0.00617*h) + 0.615, SD = .019,
multiple R*2 = 0.97. Examination of the confidence intervals on A and
B reveal that A lies between about 0.00042 and 0.00066, (L/D is almost
certainly a factor) and B lies between about -0.003 and +0.015, hence
rod hardness may be only weakly coupled to penetration, if at all. The
form is (arbitrarily) defined for 35 < HRC < 50 and 9 < L/D by setting
L/D = 30 for all L/D > 30. : .

54




PARABOLIC FITS TO
COEFFICIENTS ‘S’ vs L/D

Projectile Density 17.6, Various Hardnesses,

versus RHA HBN 269,

Normal Incidence.

Data of Farrand and Associates, ARL.

1.27
1.11
4
s 1.0t
r
0.97T
0.871
0 5 10 15 20 25 30 35
L/D
O ROD HRC 39, INDIVIDUAL FIT COEFFICIENTS
A ROD HRC 41, INDIVIDUAL FIT COEFFICIENTS
O ROD HRC 44, INDIVIDUAL FIT COEFFICIENTS
ROD HRC 39, MULTIPLE REGRESSION FIT (L/D =< 30)
ROD HRC 41, MULTIPLE REGRESSION FIT (L/D = 30)
ROD HRC 44, MULTIPLE REGRESSION FIT (L/D =< 30)
— — ROD HRC 47, EXTRAPOLATED FROM MULTIPLE REGRESSION FIT
Figure C-1. Individual fits to data of Farrand fit by multiple regression.
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